ControlNet Multi Endpoint
Overview
You can now specify multiple ControlNet models. Just make sure to pass comma separated ControlNet models to the controlnet_model
parameter as "canny,depth" and init_image
in the request body.
You can also use this endpoint to inpaint images with ControlNet. Just make sure to pass the link to the mask_image
in the request body and the controlnet_model parameter with the "inpaint" value.
Read our detailed blog article about ControlNet.
Request
--request POST 'https://modelslab.com/api/v5/controlnet' \
Send a POST
request to https://modelslab.com/api/v5/controlnet endpoint.
Body Attributes
Parameter | Description |
---|---|
key | Your API Key used for request authorization |
model_id | The ID of the model to be used. It can be public or your trained model. (Note: Controlnet does not apply when using the model with ID flux ) |
controlnet_model | ControlNet model ID. It can be from the models list or user trained. |
controlnet_type | ControlNet model type. It can be from the models list. |
auto_hint | Auto hint image;options: yes/no |
guess_mode | Set this to yes if you don't pass any prompt. The model will try to guess what's in the init_image and create best variations on its own. Options: yes/no |
prompt | Text prompt with description of required image modifications. Make it as detailed as possible for best results. |
negative_prompt | Items you don't want in the image |
init_image | Link to the Initial Image |
control_image | Link to the Controlnet Image |
mask_image | Link to the mask image for inpainting |
width | Max Height: Width: 1024x1024 |
height | Max Height: Width: 1024x1024 |
samples | Number of images to be returned in response. The maximum value is 4. |
scheduler | Use it to set a scheduler. |
tomesd | Enable tomesd to generate images: gives really fast results, default: yes, options: yes/no |
use_karras_sigmas | Use keras sigmas to generate images. gives nice results, default: yes, options: yes/no |
algorithm_type | Used in DPMSolverMultistepScheduler scheduler, default: none, options: dpmsolver+++ |
vae | Use custom vae in generating images default: null |
lora_strength | Specify the strength of the LoRa model you're using. If using multiple LoRa, provide each value as a comma-separated range from minimum 0.1 to maximum 1. |
lora_model | Multi lora is supported, pass comma saparated values. Example contrast-fix,yae-miko-genshin |
num_inference_steps | Number of denoising steps , The value accepts 21,31, |
safety_checker | A checker for NSFW images. If such an image is detected, it will be replaced by a blank image; default: yes, options: yes/no |
embeddings_model | Use it to pass an embeddings model. |
ip_adapter_id | Ip adpater id. The supported ids are ip-adapter_sdxl , ip-adapter_sd15 ,ip-adapter-plus-face_sd15 |
ip_adapter_scale | Scale should be between 0 to 1 |
ip_adapter_image | Valid image url for ip adapter |
enhance_prompt | Enhance prompts for better results; default: yes, options: yes/no |
controlnet_conditioning_scale | "guidance_scale" for controlnet, Scale for controlnet guidance. Accepts floating values from 0.1 to 5 (e.g. 0.5) |
strength | Prompt strength when using init_image. 1.0 corresponds to full destruction of information in the init image. |
seed | Seed is used to reproduce results, same seed will give you same image in return again. Pass null for a random number. |
webhook | Set an URL to get a POST API call once the image generation is complete. |
track_id | This ID is returned in the response to the webhook API call. This will be used to identify the webhook request. |
upscale | Set this parameter to "yes" if you want to upscale the given image resolution two times (2x). If the requested resolution is 512 x 512 px, the generated image will be 1024 x 1024 px. |
clip_skip | Clip Skip (minimum: 1; maximum: 8) |
base64 | Get response as base64 string, pass init_image, mask_image , control_image as base64 string, to get base64 response. default: "no", options: yes/no |
temp | Create temp image link. This link is valid for 24 hours. temp: yes, options: yes/no |
You can also use multi ControlNet. Just make sure to pass comma separated ControlNet models to the controlnet_model
as "canny,depth" and init_image
in the request body.
Models
ControlNet API using Controlnet 1.1 as default: Suported controlnet_model:
- canny
- depth
- hed
- mlsd
- normal
- openpose
- scribble
- segmentation
- inpaint
- softedge
- lineart
- shuffle
- tile
- face_detector
- qrcode
Schedulers
This endpoint also supports schedulers. Use the "scheduler" parameter in the request body to pass a specific scheduler from the list below:
- DDPMScheduler
- DDIMScheduler
- PNDMScheduler
- LMSDiscreteScheduler
- EulerDiscreteScheduler
- EulerAncestralDiscreteScheduler
- DPMSolverMultistepScheduler
- HeunDiscreteScheduler
- KDPM2DiscreteScheduler
- DPMSolverSinglestepScheduler
- KDPM2AncestralDiscreteScheduler
- UniPCMultistepScheduler
- DDIMInverseScheduler
- DEISMultistepScheduler
- IPNDMScheduler
- KarrasVeScheduler
- ScoreSdeVeScheduler
- LCMScheduler
Example
Body
{
"key": "",
"controlnet_model": "openpose,canny,face_detector",
"controlnet_type" :"openpose",
"model_id": "midjourney",
"auto_hint": "yes",
"guess_mode" : "yes",
"prompt": "human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"negative_prompt": null,
"control_image":"https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"init_image": "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image": null,
"width": "512",
"height": "512",
"samples": "1",
"scheduler": "UniPCMultistepScheduler",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"guidance_scale": 7.5,
"controlnet_conditioning_scale": 0.7,
"strength": 0.55,
"lora_model": "yae-miko-genshin,more_details",
"clip_skip": "2",
"tomesd": "yes",
"use_karras_sigmas": "yes",
"vae": null,
"lora_strength": null,
"embeddings_model": null,
"seed": null,
"webhook": null,
"track_id": null
}
Request
- JS
- PHP
- NODE
- PYTHON
- JAVA
var myHeaders = new Headers();
myHeaders.append("Content-Type", "application/json");
var raw = JSON.stringify({
"key": "",
"controlnet_model": "openpose,canny,face_detector",
"controlnet_type" :"openpose",
"model_id": "midjourney",
"auto_hint": "yes",
"guess_mode" : "yes",
"prompt": "human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"negative_prompt": null,
"control_image":"https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"init_image": "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image": null,
"width": "512",
"height": "512",
"samples": "1",
"scheduler": "UniPCMultistepScheduler",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"guidance_scale": 7.5,
"controlnet_conditioning_scale": 0.7,
"strength": 0.55,
"lora_model": "yae-miko-genshin,more_details",
"clip_skip": "2",
"tomesd": "yes",
"use_karras_sigmas": "yes",
"vae": null,
"lora_strength": null,
"embeddings_model": null,
"seed": null,
"webhook": null,
"track_id": null
});
var requestOptions = {
method: 'POST',
headers: myHeaders,
body: raw,
redirect: 'follow'
};
fetch("https://modelslab.com/api/v5/controlnet", requestOptions)
.then(response => response.text())
.then(result => console.log(result))
.catch(error => console.log('error', error));
<?php
$payload = [
"key" => "",
"controlnet_model" => "openpose,canny,face_detector",
"controlnet_type" => "openpose",
"model_id" => "midjourney",
"auto_hint" => "yes",
"guess_mode" => "yes",
"prompt" => "human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"negative_prompt" => null,
"control_image" => "https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"init_image" => "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image" => null,
"width" => "512",
"height" => "512",
"samples" => "1",
"scheduler" => "UniPCMultistepScheduler",
"num_inference_steps" => "30",
"safety_checker" => "no",
"enhance_prompt" => "yes",
"guidance_scale" => 7.5,
"controlnet_conditioning_scale" => 0.7,
"strength" => 0.55,
"lora_model" => "yae-miko-genshin,more_details",
"clip_skip" => "2",
"tomesd" => "yes",
"use_karras_sigmas" => "yes",
"vae" => null,
"lora_strength" => null,
"embeddings_model" => null,
"seed" => null,
"webhook" => null,
"track_id" => null
];
$curl = curl_init();
curl_setopt_array($curl, array(
CURLOPT_URL => 'https://modelslab.com/api/v5/controlnet',
CURLOPT_RETURNTRANSFER => true,
CURLOPT_ENCODING => '',
CURLOPT_MAXREDIRS => 10,
CURLOPT_TIMEOUT => 0,
CURLOPT_FOLLOWLOCATION => true,
CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
CURLOPT_CUSTOMREQUEST => 'POST',
CURLOPT_POSTFIELDS => json_encode($payload),
CURLOPT_HTTPHEADER => array(
'Content-Type: application/json'
),
));
$response = curl_exec($curl);
curl_close($curl);
echo $response;
var request = require('request');
var options = {
'method': 'POST',
'url': 'https://modelslab.com/api/v5/controlnet',
'headers': {
'Content-Type': 'application/json'
},
body: JSON.stringify({
"key": "",
"controlnet_model": "openpose,canny,face_detector",
"controlnet_type" :"openpose",
"model_id": "midjourney",
"auto_hint": "yes",
"guess_mode" : "yes",
"prompt": "human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"negative_prompt": null,
"control_image":"https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"init_image": "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image": null,
"width": "512",
"height": "512",
"samples": "1",
"scheduler": "UniPCMultistepScheduler",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"guidance_scale": 7.5,
"controlnet_conditioning_scale": 0.7,
"strength": 0.55,
"lora_model": "yae-miko-genshin,more_details",
"clip_skip": "2",
"tomesd": "yes",
"use_karras_sigmas": "yes",
"vae": null,
"lora_strength": null,
"embeddings_model": null,
"seed": null,
"webhook": null,
"track_id": null
})
};
request(options, function (error, response) {
if (error) throw new Error(error);
console.log(response.body);
});
import requests
import json
url = "https://modelslab.com/api/v5/controlnet"
payload = json.dumps({
"key": "",
"controlnet_model": "openpose,canny,face_detector",
"controlnet_type" :"openpose",
"model_id": "midjourney",
"auto_hint": "yes",
"guess_mode" : "yes",
"prompt": "human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"negative_prompt": None,
"control_image":"https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"init_image": "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image": None,
"width": "512",
"height": "512",
"samples": "1",
"scheduler": "UniPCMultistepScheduler",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"guidance_scale": 7.5,
"controlnet_conditioning_scale": 0.7,
"strength": 0.55,
"lora_model": "yae-miko-genshin,more_details",
"clip_skip": "2",
"tomesd": "yes",
"use_karras_sigmas": "yes",
"vae": None,
"lora_strength": None,
"embeddings_model": None,
"seed": None,
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
OkHttpClient client = new OkHttpClient().newBuilder()
.build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{\n \"key\": \"\",\n \"controlnet_model\": \"openpose,canny,face_detector\",\n \"controlnet_type\" :\"openpose\",\n \"model_id\": \"midjourney\",\n \"auto_hint\": \"yes\",\n \"guess_mode\" : \"yes\",\n \"prompt\": \"human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image\",\n \"negative_prompt\": null,\n \"control_image\": \"https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png\",\n \"init_image\": \"https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png\",\n \"mask_image\": null,\n \"width\": \"512\",\n \"height\": \"512\",\n \"samples\": \"1\",\n \"scheduler\": \"UniPCMultistepScheduler\",\n \"num_inference_steps\": \"30\",\n \"safety_checker\": \"no\",\n \"enhance_prompt\": \"yes\",\n \"guidance_scale\": 7.5,\n \"controlnet_conditioning_scale\": 0.7,\n \"strength\": 0.55,\n \"lora_model\": \"yae-miko-genshin,more_details\",\n \"clip_skip\": \"2\",\n \"tomesd\": \"yes\",\n \"use_karras_sigmas\": \"yes\",\n \"vae\": null,\n \"lora_strength\": null,\n \"embeddings_model\": null,\n \"seed\": null,\n \"webhook\": null,\n \"track_id\": null\n}");
Request request = new Request.Builder()
.url("https://modelslab.com/api/v5/controlnet")
.method("POST", body)
.addHeader("Content-Type", "application/json")
.build();
Response response = client.newCall(request).execute();
Response
{
"status": "success",
"generationTime": 14.463637351989746,
"id": 32303444,
"output": [
"https://cdn.stablediffusionapi.com/generations/0-0dcf98b7-c397-4536-bd56-f0bf69c6ec1a.png"
],
"meta": {
"prompt": "mdjrny-v4 style human model doing photoshoot, ultra realistic face, ultra high resolution, 4K image",
"model_id": "midjourney",
"controlnet_model": "openpose,canny,face_detector",
"controlnet_type": "openpose",
"negative_prompt": "",
"scheduler": "UniPCMultistepScheduler",
"safety_checker": "no",
"auto_hint": "yes",
"guess_mode": "yes",
"strength": "1",
"W": 512,
"H": 512,
"guidance_scale": 7.5,
"controlnet_conditioning_scale": "0.7",
"seed": 465647573,
"use_karras_sigmas": "yes",
"tomesd": "yes",
"init_image": "https://cdn.stablediffusionapi.com/generations/0-4957a91a-a45e-459e-b4cd-b3ca4013b847.png",
"mask_image": null,
"control_image": "https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png",
"vae": null,
"steps": 20,
"full_url": "no",
"upscale": "no",
"n_samples": 1,
"embeddings": null,
"lora": "yae-miko-genshin,more_details",
"lora_strength": 1,
"temp": "no",
"base64": "no",
"clip_skip": 2,
"file_prefix": "0dcf98b7-c397-4536-bd56-f0bf69c6ec1a.png"
}
}