Installation
Copy
pip install modelslab_py
Connecting to Client
Create client to connect to modelslab api.Copy
from modelslab_py.core.client import Client
client = Client(api_key="your api key")
Select api schema
Select particular api schema as need.Copy
# for realtime image generation api.
from modelslab_py.schemas.realtime import (
RealtimeText2ImageSchema,
RealtimeImage2ImageSchema
)
# for image editing api.
from modelslab_py.schemas.image_editing import (
OutpaintingSchema,
BackgroundRemoverSchema,
SuperResolutionSchema,
FashionSchema,
ObjectRemovalSchema,
FacegenSchema,
InpaintingSchema,
HeadshotSchema,
FluxHeadshotSchema,
)
# for community models apis.
from modelslab_py.schemas.community import (
Text2Image,
Image2Image,
Inpainting,
ControlNet
)
# for audio apis.
from modelslab_py.schemas.audio import (
Text2Audio,
Text2Speech,
Voice2Voice,
VoiceCover,
MusicGenSchema,
LyricsGenerator,
SongGenerator,
Speech2Text,
SFX
)
# for deepfake apis.
from modelslab_py.schemas.deepfake import (
SpecificFaceSwap,
MultipleFaceSwap,
SingleVideoSwap,
SpecificVideoSwap
)
# for interior apis.
from modelslab_py.schemas.interior import (
SkechRendringSchema,
InteriorSchema,
RoomDecoratorSchema,
FloorSchema,
ExteriorSchema,
ScenarioSchema
)
# for 3d apis.
from modelslab_py.schemas.threed import (
Text23D,
Image23D,
)
#for video apis.
from modelslab_py.schemas.video import (
Text2Video,
Image2Video,
Text2VideoUltra
)
Select API Client.
Copy
#to use interior api.
from modelslab_py.core.apis.interior import Interior
#to use realtime api.
from modelslab_py.core.apis.realtime import Realtime
#to use image editing api.
from modelslab_py.core.apis.image_editing import Image_editing
#to use audio api.
from modelslab_py.core.apis.audio import Audio
# to use community models api.
from modelslab_py.core.apis.community import Community
# to use deepfake api.
from modelslab_py.core.apis.deepfake import DeepFake
# to use 3D api.
from modelslab_py.core.apis.three_d import Three_D
# to use Video api.
from modelslab_py.core.apis.video import Video
Realtime Api Usage
Copy
from modelslab_py.core.apis.realtime import Realtime
from modelslab_py.core.client import Client
from modelslab_py.schemas.realtime import (
RealtimeText2ImageSchema,
RealtimeImage2ImageSchema
)
client = Client(api_key="your api key ")
api = Realtime(client=client, enterprise=False)
#for text to image api.
schema = RealtimeText2ImageSchema(...)
response = api.text_to_image(schema)
#for image to image api.
schema = RealtimeImage2ImageSchema(...)
response = api.image_to_image(schema)
Community Api Usage
Copy
from modelslab_py.core.apis.community import Community
from modelslab_py.core.client import Client
from modelslab_py.schemas.community import (
Text2Image,
Image2Image,
Inpainting,
ControlNet
)
client = Client(api_key="your api key ")
api = Community(client=client, enterprise=False)
#for text to image api.
schema = Text2Image(...)
response = api.text_to_image(schema)
#for image to image api.
schema = Image2Image(...)
response = api.image_to_image(schema)
#for image Inpainting api
schema = Inpainting(...)
response = api.inpainting(schema)
#for controlent api.
schema = ControlNet(...)
response = api.controlnet(schema)
DeepFake Api Usage
Copy
from modelslab_py.core.apis.deepfake import DeepFake
from modelslab_py.core.client import Client
from modelslab_py.schemas.deepfake import (
SpecificFaceSwap,
MultipleFaceSwap,
SingleVideoSwap,
SpecificVideoSwap
)
client = Client(api_key="your api key ")
api = DeepFake(client=client, enterprise=False)
#for specifc face swap.
schema = SpecificFaceSwap(...)
response = api.specific_face_swap(schema)
#for multiple face swap.
schema = MultipleFaceSwap(...)
response = api.specific_face_swap(schema)
#for multiple video swap.
schema = SpecificVideoSwap(...)
response = api.multiple_video_swap(schema)
#for single video swap.
schema = SingleVideoSwap(...)
response = api.single_video_swap(schema)
Image editing Api Usage
Copy
from modelslab_py.core.apis.image_editing import Image_editing
from modelslab_py.core.client import Client
from modelslab_py.schemas.image_editing import (
OutpaintingSchema,
BackgroundRemoverSchema,
SuperResolutionSchema,
FashionSchema,
ObjectRemovalSchema,
FacegenSchema,
InpaintingSchema,
HeadshotSchema,
FluxHeadshotSchema,
)
client = Client(api_key="your api key ")
api = Image_editing(client=client, enterprise=False)
#for outpainting api.
schema = OutpaintingSchema(...)
response = api.outpainting(schema)
#for background remover apis.
schema = BackgroundRemoverSchema(...)
response = api.background_remover(schema)
#for super resolution api.
schema = SuperResolutionSchema(...)
response = api.super_resolution(schema)
#for fashion api.
schema = FashionSchema(...)
response = api.fashion(schema)
#for object remover api.
schema = ObjectRemovalSchema(...)
response = api.object_remover(schema)
#for facegen api.
schema = FacegenSchema(...)
response = api.facegen(schema)
#for inpainting api.
schema = InpaintingSchema(...)
response = api.inpainting(schema)
#for headshot api.
schema = HeadshotSchema(...)
response = api.headshot(schema)
#for flux headshot api.
schema = FluxHeadshotSchema(...)
response = api.flux_headshot(schema)
Interior Api Usage
Copy
from modelslab_py.core.apis.interior import Interior
from modelslab_py.core.client import Client
from modelslab_py.schemas.interior import (
ExteriorSchema,
ScenarioSchema,
FloorSchema,
RoomDecoratorSchema,
InteriorSchema
)
client = Client(api_key="your api key ")
api = Interior(client=client, enterprise=False)
#for interior apis.
schema = InteriorSchema(...)
response = api.interior(schema)
#for room decorator apis.
schema = RoomDecoratorSchema(...)
response = api.room_decorator(schema)
#for floor planning apis.
schema = FloorSchema(...)
response = api.floor(schema)
#for scenario changer apis.
schema = ScenarioSchema(...)
response = api.scenario(schema)
#for exterior restorer apis.
schema = ScenariExteriorSchemaoSchema(...)
response = api.exterior_restorer(schema)
#for room decorator apis.
schema = RoomDecoratorSchema(...)
response = api.room_decorator(schema)
Audio Api Usage
Copy
from modelslab_py.core.apis.audio import Audio
from modelslab_py.core.client import Client
from modelslab_py.schemas.audio import (
Text2Audio,
Text2Speech,
Voice2Voice,
VoiceCover,
MusicGenSchema,
LyricsGenerator,
SongGenerator,
Speech2Text,
SFX
)
client = Client(api_key="your api key ")
api = Audio(client=client, enterprise=False)
#for text to audio.
schema = Text2Audio(...)
response = api.text_to_audio(schema)
#for text to speech apis.
schema = Text2Speech(...)
response = api.text_to_speech(schema)
#for voice to voice apis.
schema = Voice2Voice(...)
response = api.voice2voice(schema)
#for voice cover apis.
schema = VoiceCover(...)
response = api.voice_cover(schema)
#for music gen apis.
schema = MusicGenSchema(...)
response = api.music_gen(schema)
#for lyrics apis.
schema = LyricsGenerator(...)
response = api.lyrics_gen(schema)
#for song generation apis.
schema = SongGenerator(...)
response = api.song_generator(schema)
#for speech to text apis.
schema = Speech2Text(...)
response = api.speech_to_text(schema)
#for sfx gen apis.
schema = SFX(...)
response = api.sfx_gen(schema)
3D Api Usage
Copy
from modelslab_py.core.apis.three_d import Three_D
from modelslab_py.core.client import Client
from modelslab_py.schemas.threed import Text23D,Image23D
client = Client(api_key="your api key ")
api = Three_D(client=client, enterprise=False)
#for text to 3d.
schema = Text23D(...)
response = api.text_to_3d(schema)
#for image to 3d apis.
schema = Image23D(...)
response = api.image_to_3d(schema)
Video Api Usage
Copy
from modelslab_py.core.apis.video import Video
from modelslab_py.core.client import Client
from modelslab_py.schemas.video import Text2Video, Image2Video
client = Client(api_key="your api key ")
api = Video(client=client, enterprise=False)
#for text to video.
schema = Text2Video(...)
response = api.text_to_video(schema)
#for image to video.
schema = Image2Video(...)
response = api.image_to_video(schema)
Example Usage.
Copy
from modelslab_py.core.client import Client
from modelslab_py.schemas.image_editing import BackgroundRemoverSchema
from modelslab_py.utils.image_utils import *
from modelslab_py.core.apis.image_editing import Image_editing
client = Client(api_key="your api key ")
image_pil = read_image_from_file("7c504529-f038-4011-b344-764e0da1d4f2-0.png")
image = image_to_base64(image_pil)
schema = BackgroundRemoverSchema(
image=image,
base64=True,
)
api = Image_editing(client=client, enterprise=False)
response = api.background_remover(schema=schema)
print(response)