Installation

pip install modelslab_py

Connecting to Client

Create client to connect to modelslab api.
from modelslab_py.core.client import Client

client = Client(api_key="your api key")

Select api schema

Select particular api schema as need.
# for realtime image generation api.
from modelslab_py.schemas.realtime import (
    RealtimeText2ImageSchema,
    RealtimeImage2ImageSchema
)

# for image editing api.
from modelslab_py.schemas.image_editing import (
    OutpaintingSchema,
    BackgroundRemoverSchema,
    SuperResolutionSchema,
    FashionSchema,
    ObjectRemovalSchema,
    FacegenSchema,
    InpaintingSchema,
    HeadshotSchema,
    FluxHeadshotSchema,
)

# for community models apis.
from modelslab_py.schemas.community import (
    Text2Image,
    Image2Image,
    Inpainting,
    ControlNet
)

# for audio apis.
from modelslab_py.schemas.audio import (
    Text2Audio,
    Text2Speech,
    Voice2Voice,
    VoiceCover,
    MusicGenSchema,
    LyricsGenerator,
    SongGenerator,
    Speech2Text,
    SFX
)
# for deepfake apis.
from modelslab_py.schemas.deepfake import (
    SpecificFaceSwap,
    MultipleFaceSwap,
    SingleVideoSwap,
    SpecificVideoSwap
)

# for interior apis.
from modelslab_py.schemas.interior import (
    SkechRendringSchema,
    InteriorSchema,
    RoomDecoratorSchema,
    FloorSchema,
    ExteriorSchema,
    ScenarioSchema
)

# for 3d apis.
from modelslab_py.schemas.threed import (
    Text23D,
    Image23D,
)

#for video apis.
from modelslab_py.schemas.video import (
    Text2Video,
    Image2Video,
    Text2VideoUltra
)

Select API Client.

#to use interior api.
from modelslab_py.core.apis.interior import Interior

#to use realtime api.
from modelslab_py.core.apis.realtime import Realtime

#to use image editing api.
from modelslab_py.core.apis.image_editing import Image_editing

#to use audio api.
from modelslab_py.core.apis.audio import Audio

# to use community models api.
from modelslab_py.core.apis.community import Community

# to use deepfake api.
from modelslab_py.core.apis.deepfake import DeepFake

# to use 3D api.
from modelslab_py.core.apis.three_d import Three_D

# to use Video api.
from modelslab_py.core.apis.video import Video

Realtime Api Usage

from modelslab_py.core.apis.realtime import Realtime
from modelslab_py.core.client import Client

from modelslab_py.schemas.realtime import (
    RealtimeText2ImageSchema,
    RealtimeImage2ImageSchema
)

client = Client(api_key="your api key ")

api = Realtime(client=client, enterprise=False)

#for text to image api.

schema = RealtimeText2ImageSchema(...)
response = api.text_to_image(schema)

#for image to image api.

schema = RealtimeImage2ImageSchema(...)
response = api.image_to_image(schema)

Community Api Usage

from modelslab_py.core.apis.community import Community
from modelslab_py.core.client import Client

from modelslab_py.schemas.community import (
    Text2Image,
    Image2Image,
    Inpainting,
    ControlNet
)

client = Client(api_key="your api key ")

api = Community(client=client, enterprise=False)

#for text to image api.

schema = Text2Image(...)
response = api.text_to_image(schema)

#for image to image api.

schema = Image2Image(...)
response = api.image_to_image(schema)

#for image Inpainting api
schema = Inpainting(...)
response = api.inpainting(schema)

#for controlent api.
schema = ControlNet(...)
response = api.controlnet(schema)

DeepFake Api Usage

from modelslab_py.core.apis.deepfake import DeepFake
from modelslab_py.core.client import Client

from modelslab_py.schemas.deepfake import (
    SpecificFaceSwap,
    MultipleFaceSwap,
    SingleVideoSwap,
    SpecificVideoSwap
)

client = Client(api_key="your api key ")

api = DeepFake(client=client, enterprise=False)

#for specifc face swap.

schema = SpecificFaceSwap(...)
response = api.specific_face_swap(schema)

#for multiple face swap.

schema = MultipleFaceSwap(...)
response = api.specific_face_swap(schema)

#for multiple video swap.
schema = SpecificVideoSwap(...)
response = api.multiple_video_swap(schema)

#for single video swap.
schema = SingleVideoSwap(...)
response = api.single_video_swap(schema)

Image editing Api Usage

from modelslab_py.core.apis.image_editing import Image_editing
from modelslab_py.core.client import Client

from modelslab_py.schemas.image_editing import (
    OutpaintingSchema,
    BackgroundRemoverSchema,
    SuperResolutionSchema,
    FashionSchema,
    ObjectRemovalSchema,
    FacegenSchema,
    InpaintingSchema,
    HeadshotSchema,
    FluxHeadshotSchema,
)

client = Client(api_key="your api key ")

api = Image_editing(client=client, enterprise=False)

#for outpainting api.

schema = OutpaintingSchema(...)
response = api.outpainting(schema)

#for background remover apis.

schema = BackgroundRemoverSchema(...)
response = api.background_remover(schema)

#for super resolution api.
schema = SuperResolutionSchema(...)
response = api.super_resolution(schema)

#for fashion api.
schema = FashionSchema(...)
response = api.fashion(schema)

#for object remover api.
schema = ObjectRemovalSchema(...)
response = api.object_remover(schema)

#for facegen api.
schema = FacegenSchema(...)
response = api.facegen(schema)

#for inpainting api.
schema = InpaintingSchema(...)
response = api.inpainting(schema)

#for headshot api.
schema = HeadshotSchema(...)
response = api.headshot(schema)

#for flux headshot api.
schema = FluxHeadshotSchema(...)
response = api.flux_headshot(schema)

Interior Api Usage

from modelslab_py.core.apis.interior import Interior
from modelslab_py.core.client import Client

from modelslab_py.schemas.interior import (
    ExteriorSchema,
    ScenarioSchema,
    FloorSchema,
    RoomDecoratorSchema,
    InteriorSchema
)

client = Client(api_key="your api key ")

api = Interior(client=client, enterprise=False)

#for interior apis.

schema = InteriorSchema(...)
response = api.interior(schema)

#for room decorator apis.

schema = RoomDecoratorSchema(...)
response = api.room_decorator(schema)

#for floor planning apis.
schema = FloorSchema(...)
response = api.floor(schema)

#for scenario changer apis.
schema = ScenarioSchema(...)
response = api.scenario(schema)

#for exterior restorer apis.
schema = ScenariExteriorSchemaoSchema(...)
response = api.exterior_restorer(schema)

#for room decorator apis.
schema = RoomDecoratorSchema(...)
response = api.room_decorator(schema)

Audio Api Usage

from modelslab_py.core.apis.audio import Audio
from modelslab_py.core.client import Client

from modelslab_py.schemas.audio import (
    Text2Audio,
    Text2Speech,
    Voice2Voice,
    VoiceCover,
    MusicGenSchema,
    LyricsGenerator,
    SongGenerator,
    Speech2Text,
    SFX
)

client = Client(api_key="your api key ")

api = Audio(client=client, enterprise=False)

#for text to audio.

schema = Text2Audio(...)
response = api.text_to_audio(schema)

#for text to speech apis.

schema = Text2Speech(...)
response = api.text_to_speech(schema)

#for voice to voice apis.
schema = Voice2Voice(...)
response = api.voice2voice(schema)

#for voice cover apis.
schema = VoiceCover(...)
response = api.voice_cover(schema)

#for music gen apis.
schema = MusicGenSchema(...)
response = api.music_gen(schema)

#for lyrics apis.
schema = LyricsGenerator(...)
response = api.lyrics_gen(schema)

#for song generation apis.
schema = SongGenerator(...)
response = api.song_generator(schema)

#for speech to text apis.
schema = Speech2Text(...)
response = api.speech_to_text(schema)

#for sfx gen apis.
schema = SFX(...)
response = api.sfx_gen(schema)

3D Api Usage

from modelslab_py.core.apis.three_d import Three_D
from modelslab_py.core.client import Client

from modelslab_py.schemas.threed import Text23D,Image23D

client = Client(api_key="your api key ")

api = Three_D(client=client, enterprise=False)

#for text to 3d.

schema = Text23D(...)
response = api.text_to_3d(schema)

#for image to 3d apis.

schema = Image23D(...)
response = api.image_to_3d(schema)

Video Api Usage

from modelslab_py.core.apis.video import Video
from modelslab_py.core.client import Client

from modelslab_py.schemas.video import Text2Video, Image2Video

client = Client(api_key="your api key ")

api = Video(client=client, enterprise=False)

#for text to video.

schema = Text2Video(...)
response = api.text_to_video(schema)

#for image to video.

schema = Image2Video(...)
response = api.image_to_video(schema)

Example Usage.

from modelslab_py.core.client import Client
from modelslab_py.schemas.image_editing import BackgroundRemoverSchema
from modelslab_py.utils.image_utils import *
from modelslab_py.core.apis.image_editing import Image_editing

client = Client(api_key="your api key ")

image_pil = read_image_from_file("7c504529-f038-4011-b344-764e0da1d4f2-0.png")
image = image_to_base64(image_pil)
schema = BackgroundRemoverSchema(  
    image=image,
    base64=True,
)

api = Image_editing(client=client, enterprise=False)

response = api.background_remover(schema=schema)

print(response)